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Abstract
A generalization of the Hirota–Miwa equation to an abstract non-Abelian
associative algebra is considered. This system is integrable in the sense
that it arises as compatibility condition for a linear system and has solutions
constructed by means of the application of an arbitrary number of Darboux
transformations. These solutions are in general expressed in terms of
quasideterminants.

PACS numbers: 02.30.Ik, 02.60.Nm
Mathematics Subject Classification: 35Q58, 39A10

1. Introduction

Perhaps the most important and widely studied three-dimensional discrete integrable system
is the Hirota–Miwa (or discrete KP (Kadomtsev–Petviashvili)) equation

A23τ(n1 + 1)τ (n2 + 1, n3 + 1) + A13τ(n2 + 1)τ (n1 + 1, n3 + 1)

+ A12τ(n3 + 1)τ (n1 + 1, n2 + 1) = 0, (1)

where τ = τ(n1, n2, n3) and Aij are arbitrary constants. In the above equation the dependence
on unincremented variables is omitted. It was discovered by Hirota [1] as a fully discrete
analogue of the two-dimensional Toda equation and later Miwa [2] showed that it was
intimately related to the KP (Kadomtsev–Petviashvili) hierarchy. One may regard (1) as
a master equation which by taking careful continuum limits gives many well-known semi-
discrete and continuous integrable systems. This means that such things as Bäcklund/Darboux
transformations, exact solutions, Lax pair, etc for these systems may be obtained by studying
the corresponding things for (1). Another important aspect of this that we wish to emphasize
is that the simplicity and symmetry of (1), which allow for simple calculations, is broken
when one takes continuum limits; simple formulae become complicated. Because of this,
there is a good reason to develop as much theory as possible for the fully discrete system and

1 Permanent address: Department of Mathematics, University of Glasgow, Glasgow G12 8QQ, UK.

0305-4470/06/185053+13$30.00 © 2006 IOP Publishing Ltd Printed in the UK 5053

http://dx.doi.org/10.1088/0305-4470/39/18/019
mailto:j.nimmo@maths.gla.ac.uk
http://stacks.iop.org/JPhysA/39/5053


5054 J J C Nimmo

then carry these results to the continuum limits. This is a prime motivation for studying the
generalization of the system we introduce in this paper.

It is known that the Hirota–Miwa equation has solutions expressed in terms of casoratian
determinants which may be constructed by the direct method [3] or by means of Darboux
transformations [4]. Considering the details of how these solutions are obtained, it is clear that
one may generalize the system in two ways while still maintaining a similar, but much larger,
class of solutions. First, one may obtain a generalized system having solutions in a matrix,
or more generally a non-Abelian associative, algebra. Also, the lattice on which the system
lives, which for (1) is defined in terms of shift operators, may be defined more generally in
terms of any commuting operators which act homomorphically on the solutions. By making
this abstraction, we will see how we are able to integrate the definition of the system and its
Darboux transformations in one uniform expression.

The Hirota–Miwa equation arises as the compatibility condition of either of the two linear
systems

φ(ni + 1) − φ(nj + 1) = 1

Aij

τ (ni + 1)τ (nj + 1)

ττ (ni + 1, nj + 1)
φ(ni + 1, nj + 1) (2)

for 1 � i < j � 3 or its formal adjoint

φ(nj + 1) − φ(ni + 1) = 1

Aij

τ (ni + 1)τ (nj + 1)

ττ (ni + 1, nj + 1)
φ. (3)

The adjoint system, being first order rather than second order, is simpler to use and it is this
that we use to obtain the generalization.

This paper is organized as follows. In section 2, we introduce an infinite-dimensional
generalization of (3) in an associative algebra and consider its compatibility conditions. The
result is a three-dimensional subsystem which we refer to as a non-Abelian Hirota–Miwa
equation. This system is integrable in the sense that it arises as compatibility condition for a
linear system and has solutions constructed by means of the application of an arbitrary number
of Darboux transformations. In section 3, it is shown that Darboux transformations for this
system are found as realizations of the remaining homomorphisms acting on the subsystem. In
section 4, we present explicit formulae for solutions of the system obtained by the application
of an arbitrary number of Darboux transformations to a vacuum solution. The proofs of
these formulae are given in the appendix. In the general case, in which the algebra is not
a matrix algebra, determinants are of course not defined and in this case the solutions are
expressed in terms of quasideterminants (see [5] and the references therein). However, when
we specialize to a matrix system, we describe the solutions one obtains expressed as ratios of
determinants.

2. Linear system and its compatibility conditions

Let A be an associative algebra, over a field F, with multiplicative identity 1. In general, of
course, A is not commutative. Let A× denote the subgroup of elements θ ∈ A having a (left-
and right-) multiplicative inverse θ−1 ∈ A. In the most obvious situation we have in mind, A
would be the algebra of N × N matrices and A× the subgroup of invertible matrices.

A homomorphism is a mapping s:A → A satisfying

s(a + b) = s(a) + s(b), s(ab) = s(a)s(b). (4)

Let sk, k ∈ N, be a sequence of commuting homomorphisms. The compositions of such
mappings sij ···k = si ◦ sj ◦ · · · ◦ sk are symmetric in their indices and are themselves
homomorphisms. We will also use subscript notation for the action of these homomorphisms;
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A,k for sk(A) and A,ij ···k for sij ···k(A). The prototype for the homomorphisms are shift
operators; if a = a(n1, n2, . . .) then si defined by si(a) = a|ni→ni+1 are such a sequence of
commuting homomorphisms.

A constant α ∈ A is such that si(α) = α for all i. Also, we let D denote a commutative
subalgebra of A and D× its invertible elements. In the case that A is a matrix algebra, then D
consists of the diagonal matrices and D× the diagonal matrices with non-zero entries on the
diagonal.

In order to explain the main ideas without getting submerged in too much detail, we will
not describe the most general situation immediately. Instead, we will consider the simplest
situation in which all of the main ideas are evident and then give a more general form later.
In the case that the homomorphisms are shift operators, this more general system is related to
the one we study in detail through a gauge transformation.

We first consider the system of linear equations

φ,i − φ,j + Uijφ = 0, i, j ∈ N, (5)

for φ ∈ A, where the potentials Uij ∈ A× (for i �= j ) and Uii = 0 and is modelled on
the adjoint linear problem for the Abelian Hirota–Miwa equation (3). This linear system is
compatible if and only if

Uij + Ujk + Uki = 0, (6)

Uij,k + Ujk,i + Uki,j = 0, (7)

Uij,kUki = Uki,jUij , (8)

for each i, j, k ∈ N. The first set of these conditions expresses the fact that the system
is algebraically overdetermined whereas the other two arise from the requirement that all
homomorphisms si commute. Note, in particular, that (6) includes the condition that the
potentials are skew symmetric in their indices; Uii = 0 and Uji = −Uij for all i, j ∈ N.

Apart from these symmetry conditions, for each distinct triple i, j, k ∈ N there are in fact
five relations between the three potentials Uij , Ujk and Uki contained within (6)–(8). This is
because (8) is not symmetric under permutations of i, j, k and gives three conditions

Uij,kUki = Uki,jUij , Uij,kUjk = Ujk,iUij , Ujk,iUki = Uki,jUjk. (9)

However, by considering the sum of the first two equations in (9) and making use of (6) one
may deduce (7). For this reason, we may eliminate condition (7) and obtain the compatibility
conditions in final form

Uij + Ujk + Uki = 0, (10)

Uij,kUki = Uki,jUij . (11)

Next, we introduce Xi ∈ A× and αii = 0 and αij ∈ D× (for i �= j ) satisfying (11). Then,
we make the ansatz

Uij = Xi,jαijX
−1
i = −Xj,iαjiX

−1
j , (12)

which satisfies (11) identically. So we see that the compatibility condition can be reduced
to the purely algebraic consistency condition (10). It is through the nonconstancy of αij that
inhomogeneity may enter the system, but here we will assume that they are constant.

In the Abelian case, we can introduce a single τ -function and make the further ansatz
Xi = τ,i/τ . Then, for each distinct triple i, j, k, the four equations in (10) give only one
nontrivial condition

αij τ,ij τ,k + αjkτ,jkτ,i + αkiτ,kiτ,j = 0 (13)
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and the requirement that the αpq are skew symmetric in their indices. This is simply a form
of the Hirota–Miwa equation if one takes τ = τ(n1, n2, . . .) and uses the homomorphisms as
τ,i = τ |ni→ni+1. For this reason, we refer to the system under consideration as a non-Abelian
Hirota–Miwa equation [1, 2].

Returning to, and summarizing, the non-Abelian case, we have proved the following
result.

Theorem 1. The linear system

φ,i − φ,j + Uijφ = 0, (14)

where Uij = Xi,jαijX
−1
i , is compatible for all φ if and only if

Uij + Ujk + Uki = 0. (15)

For each distinct triple i, j, k, this is a system of four nonlinear equations in the three unknowns
Xi,Xj ,Xk ∈ A×.

If we assume that the homomorphisms s1, s2, s3 are shift operators defined on a three-
dimensional lattice defined by variables n1, n2, n3, then we may use a gauge transformation

φ →
∏
k�1

α
nk

k φ, Xi →
∏
k�1

α
nk

k Xi, (16)

where αk are commuting, constant and invertible, to generalize the linear and nonlinear
systems.

Theorem 2. The linear system

αiφ,i − αjφ,j + Uijφ = 0, (17)

where Uij = αjXi,jαijX
−1
i , is compatible for all φ if and only if

Uij + Ujk + Uki = 0. (18)

Although this result is being presented as a simple corollary of theorem 1, it is in fact also
valid for any homomorphisms. But, since in other cases there may be no gauge transformation,
it must be proved directly in those cases, mimicking the earlier proof. Throughout this paper,
we will only consider the simplest version of the system given in theorem 1 but note that all
results can readily be generalized to apply for the system described in theorem 2.

3. Darboux transformations as homomorphisms

Let us now fix on one such triple, the obvious choice being 1, 2, 3. The nonlinear system
referred to in theorem 1 is given explicitly by

X1,2α12X
−1
1 + X2,3α23X

−1
2 + X3,1α31X

−1
3 = 0, (19)

X1,2α12X
−1
1 + X2,1α21X

−1
2 = X2,3α23X

−1
2 + X3,2α32X

−1
3 = X3,1α31X

−1
3 + X1,3α13X

−1
1 = 0.

(20)

The remaining homomorphisms, which we write as dk = sk+3 for k ∈ N, can act on this
system and because they are homomorphisms, and so preserve the structure of both the
nonlinear equations and the linear system from which they arise, they may be thought of
as abstract Darboux/Bäcklund transformations, giving new eigenfunctions dk(φ) and new
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solutions dk(Xi) in terms of known ones. In this section, we will obtain some concrete
expressions for such transformations and thereby construct a family of exact solutions.

First, we fix a particular vacuum solution X1, X2, X3; for example, if αij + αjk + αki = 0
for i, j, k ∈ {1, 2, 3}, then we may choose the trivial solution X1 = X2 = X3 = 1. Also,
suppose that we may solve the associated linear problem (17) (for i, j ∈ {1, 2, 3}) with this
vacuum potential. Let E and E× denote the sets of eigenfunctions and invertible eigenfunctions,
respectively. We will express each dk in terms of an eigenfunction θk ∈ E×. There will be
further conditions on θk introduced later relating to the independence of these eigenfunctions
and to nonsingularity.

To begin this construction, suppose that dk(θk) = θk,k+3 = 0. From (17), for i = k + 3
with φ = θk , we obtain the higher potentials

Uk+3j = θk,j θ
−1
k , k ∈ N, j = 1, 2, 3.

From (12), we also have two other expressions for these potentials:

Uk+3j = Xk+3,j αk+3jX
−1
k+3 = −dk(Xj )αjk+3X

−1
j .

Comparing these expressions, it is clear that we may choose Xk+3 = θk and αk+3j = αjk+3 = 1
and then

dk(Xj ) = −θk,j θ
−1
k Xj , k ∈ N, j = 1, 2, 3. (21)

Also, from (14) for i = k + 3 it follows that

dk(φ) = φ,j − θk,j θ
−1
k φ, k ∈ N, j = 1, 2 or 3. (22)

In (22), the construction naturally gives three different expressions for dk(φ). Although it is
unnecessary to do so, one may also check directly that since both φ and θk are eigenfunctions
for the vacuum potential, all are equal. This is the familiar expression for the discrete Darboux
transformation for the Hirota–Miwa equation (see for example [4, 6]) extended to the non-
Abelian case. It is noteworthy that it arises in an entirely natural way as a manifestation of the
system itself and not as some externally imposed transformation.

Finally, for completeness we note that all of the higher potentials are determined in terms
of the eigenfunctions θk . Using (12) with Xk+3 = θk and αij = 1, we obtain Uij for i > 3
and/or j > 3.

So far we only have explicit formulae for dk when it acts on vacuum
eigenfunctions, (22), and on the vacuum potentials Xi , (21). This shows, in particular, that
if (X1, X2, X3) is a known solution of (19)–(20) and θk a corresponding eigenfunction, then(−θk,1θ

−1
k X1,−θk,2θ

−1
k X2,−θk,3θ

−1
k X3

)
is also a solution. However, dk is by definition one

of the sequences of commuting homomorphisms si and we will make use of the properties of
such operators in the next section to obtain other explicit formulae corresponding to repeated
application of Darboux transformations and hence obtain a rich family of solutions.

4. Iteration of Darboux transformations

In this section, we will describe some properties of matrices over the noncommutative algebra
A and how they may be used to find expressions for solution obtained by the application of
multiple Darboux transformations. The topic of matrices of noncommuting objects has a long
history and has been studied in depth in recent years by Gelfand, Retakh and co-workers who
developed the theory of quasideterminants and this has recently been extensively reviewed in
[5]. Here we do not attempt to use the general theory but simply mention a few basic formulae.
We also observe that this theory has been used before in the context of integrable systems
[7, 8] but for continuous rather than discrete systems.
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4.1. Matrix inversion over A and the Schur complement

Let a, b, c, d ∈ A and consider the matrix

M =
[
a b

c d

]
∈ A2×2.

If a is invertible then the Schur complement of a in M is defined to be (M|a) = d − ca−1b

(see [9]). This is also the simplest type of quasideterminant [5]. If (M|a) is invertible then so
is M and

M−1 =
[
a−1 + a−1b(M|a)−1ca−1 −a−1b(M|a)−1

−(M|a)−1ca−1 (M|a)−1

]
. (23)

In fact, these results remain valid if we replace elements a, b, c, d with matrices
A,B,C,D over A of appropriate dimensions. Assuming that A and (M|A) := D − CA−1B

are invertible then

M−1 =
[
A−1 + A−1B(M|A)−1CA−1 −A−1B(M|A)−1

−(M|A)−1CA−1 (M|A)−1

]
. (24)

Note also that if A is invertible then0 0 I

0 A B

I C D

−1

=
−(M|A) −CA−1 I

−A−1B A−1 0
I 0 0

 , (25)

where I and 0 denote identity matrices and zero matrices of appropriate size. This means that
one may obtain the Schur complement by projecting onto the (1, 1) block in the inverse of the
bordered matrix shown in (25). Explicitly we have

(M|A) = D − CA−1B = −[I 0 0]

0 0 I

0 A B

I C D

−1 I

0
0

 :=
0 0 I

0 A B

I C D

p

. (26)

More generally, using (26), it is easy to prove the following lemma.

Lemma 1. Let M and A be as mentioned above and let M1 be a matrix such that (M|A) = M
p

1 .
Then M2 = PM1Q, where P and Q are invertible and

P =
I · ·

0 · ·
0 · ·

 , Q =
I 0 0

· · ·
· · ·

 ,

is such that (M|A) = M
p

2 also.

In particular, in proving some of the results on iterated Darboux transformations the
following alternative formulae may be used:

(M|A) =
0 0 I

0 A B

I C D

p

=
0 0 I

I C D

0 A B

p

=
0 I 0

0 B A

I D C

p

=
0 I 0

I D C

0 B A

p

. (27)

Finally, in the case that A is a matrix algebra, we may use expression (26) to express the
entries in the matrix (M|A) as ratios of determinants

(M|A)ij =

∣∣∣∣ A ci(B)

rj (C) Dij

∣∣∣∣
|A| , (28)

where ci(B) denotes the ith column of B and rj (C) the j th row of C.
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4.2. Reformulation of Darboux transformations

The first use of these formulae is made in re-expressing the action (21), (22) of a single
Darboux transformation in the notation introduced in (26):

dk(φ) =
0 0 1

0 θk φ

1 θk,i φ,i

p

(29)

and

dk(Xi) =
0 0 1

0 θk 1
1 θk,i 0

p

Xi, (30)

for k ∈ N and i = 1, 2 or 3.
Recall that dk are at present only defined on vacuum eigenfunctions and potentials. So,

when calculating dk(φ,i), for example, we must first use the fact that dk and si commute
and write it as (dk(φ)),i . Also, if θ and dk(θ) are invertible, we may use the homomorphic
nature of dk to obtain dk(θ

−1) = dk(θ)−1. Proceeding to consider the second degree Darboux
transformations dkl := dl ◦ dk = dk ◦ dl , assuming that dk(θl) is nonsingular, we have

dkl(φ) = dk

(
φ,i − θl,iθ

−1
l φ

)
= (dk(φ)),i − (dk(θl)),idk(θl)

−1dk(φ)

= φ,ii − θk,iiθ
−1
k,i φ,i − (

θl,ii − θk,iiθ
−1
k,i θl,i

)(
θl,i − θk,iθ

−1
k θl

)−1(
φ,i − θk,iθ

−1
k φ

)
,

for any i ∈ {1, 2, 3}. It is not at all obvious from this expression that it is invariant
under interchange of k and l, as we know by construction that it should be. However,
by straightforward manipulation, this expression can be rewritten using (23) in the more
obviously symmetric form

dkl(φ) = sii(φ) − [sii(θk) sii(θl)]

[
θk θl

si(θk) si(θl)

]−1 [
φ

si(φ)

]
. (31)

Then, using (27), this can also be written as

dkl(φ) =


0 0 0 1
0 θk θl φ

0 si(θk) si(θl) si(φ)

1 sii(θk) sii(θl) sii(φ)


p

. (32)

By interchanging the middle columns and using the invariance described in lemma 1, one
confirms that the Darboux transformations dk indeed commute. In a similar way,

dkl(Xi) = dk(−θl,iθ
−1
l Xi)

= −(dk(θl)),idk(θl)
−1dk(Xi)

= (
θl,ii − θk,iiθ

−1
k,i θl,i

)(
θl,i − θk,iθ

−1
k θl

)−1
θk,iθ

−1
k Xi,

which may be rewritten as

dkl(Xi) = [θk,ii θl,ii]

[
θk θl

θk,i θl,i

]−1 [
1
0

]
Xi, (33)
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which, using (26), is

dkl(Xi) = −


0 0 0 1
0 θk θl 1
0 si(θk) si(θl) 0
1 sii(θk) sii(θl) 0


p

Xi. (34)

The general results for the composition of an arbitrary number of Darboux transformations
d1, . . . , dn are summarized in the following theorem. The explicit formulae are proved in the
appendix.

Theorem 3. Let Xi, i = 1, 2, 3, satisfy (19)–(20) and let θk , k = 1, . . . , n, be the
corresponding eigenfunctions, solutions of (17), from which commuting homomorphic
Darboux transformations dk may be defined by (21), (22). The composition of these
d1,...,n = d1 ◦ · · · ◦ dn is also a Darboux transformation and so

d1,...,n(Xi) = (−1)n−1



0 0 1
0 θ 1
0 si(θ) 0
...

...
...

0 sn−1
i (θ) 0

1 sn
i (θ) 0



p

Xi, (35)

i = 1, 2, 3, where θ = [θ1· · ·θn], also satisfy (19)–(20). The corresponding eigenfunctions
are

d1,...,n(φ) =



0 0 1
0 θ φ

0 si(θ) si(φ)

...
...

...

0 sn−1
i (θ) sn−1

i (φ)

1 sn
i (θ) sn

i (φ)



p

. (36)

Further, one may also calculate the effect of the Darboux transformations on X−1
i :

d1,...,n

(
X−1

i

) = (−1)n−1X−1
i



0 0 1
1 θ 0
0 si(θ) 0
...

...
...

0 sn−1
i (θ) 0

0 sn
i (θ) 1



p

. (37)

4.3. Specialization to a matrix algebra

Finally, we give some details of some results to be presented in more detail in a subsequent
paper [10] on what more can be done when one takes the simplest concrete choice of A as the
algebra of N × N complex matrices MN×N(C) and s1, s2, s3 are shift operators with respect
to variables n1, n2, n3, respectively.

For simplicity, choose αij to be scalar and skew symmetric in indicies i, j so that we may
choose the simple vacuum solution Xi = 1 of (18). One may make the ansätze Xi = Gi/F
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and X−1
i = Hi/F,i , where Gi,Hi are matrix valued and F is a scalar function of n1, n2, n3.

Then, the nonlinear system (18) becomes

α12G1,2H1F,3 + α23G2,3H2F,1 + α31G3,1H3F,2 = 0, (38)

G1,2H1 − G2,1H2 = G2,3H2 − G3,2H3 = G3,1H3 − G1,3H1 = 0, (39)

and in addition

G1H1 = FF,1, G2H2 = FF,2, G3H3 = FF,3, (40)

which might be called matrix Hirota–Miwa equations.
This system has solutions obtained from (35) and (37) in which each θk is an invertible

N × N matrix solution of the linear difference equations (17), and so θ is an N × nN matrix,
and 1 is the N × N identity matrix. Then, using (28), one obtains expressions for F and the
(i, j)th entries in the matrices Gk and Hk as casoratian-like determinants:

F =

∣∣∣∣∣∣∣∣∣
θ

si(θ)

...

sn−1
i (θ)

∣∣∣∣∣∣∣∣∣ ,
where i = 1, 2 or 3, and

(Gk)ij =

∣∣∣∣∣∣∣∣∣∣∣∣

θ̂

sk(θ)

...

sn−1
k (θ)

sn−1
k (θi )

∣∣∣∣∣∣∣∣∣∣∣∣
, (Hk)ij =

∣∣∣∣∣∣∣∣∣∣∣∣

θi

sk(θ)

...

sn−1
k (θ)

sn−1
k (θ̂ )

∣∣∣∣∣∣∣∣∣∣∣∣
,

where θi denotes the ith row of θ and θ̂ the matrix obtained by deleting the j th row from θ.
This approach allows for a direct verification of the solution that is rather reminiscent

of the bilinear approach to the self-dual Yang–Mills equations given in [11]. This will be
reported on in full in [10].
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Appendix. Proofs of iteration formulae

Here, we will give proofs of the general formulae expressing the action of n of Darboux
transformations on vacuum eigenfunctions and potentials. All proofs are by induction on n.

Notation. In the proofs below we will employ the following shorthand notation. For any given
n ∈ N and i = 1, 2 or 3, and k = n or n + 1,

θ = [θ1 · · · θn], θk = big[sk
i (θ1) · · · sk

i (θn)
]
,

φk = sk
i (φ), θk

n+1 = sk
i (θn+1),
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� =


φ

si(φ)
...

sn−1
i (φ)

 , �n+1 =


θn+1

si(θn+1)
...

sn−1
i (θn+1)


and

� =


θ1 · · · θn

si(θ1) · · · si(θn)
...

...

sn−1
i (θ1) · · · sn−1

i (θn)

 .

We also define the n × 1 projection matrices

P =


1
0
...

0

 , Q =


0
...

0
1

 .

Proof of (36). The result for n = 1 was given in (29).
Now assume that the result is true for a given n ∈ N. Then, using (26), we have

d1,...,n(φ) = φn − θn�−1�, d1,...,n(θn+1) = θn
n+1 − θn�−1�n+1. (A.1)

Now consider the matrix Mn+1 used in the expression for d1,...,n+1(φ), partitioned in two distinct
way,

Mn+1 =



[|..‖]0 0 · · · 0 0 1
0 θ1 · · · θn θn+1 φ

0 si(θ1) · · · si(θn) si(θn+1) si(φ)
...

...
...

...
...

0 sn−1
i (θ1) · · · sn−1

i (θn) sn−1
i (θn+1) sn−1

i (φ)

0 sn
i (θ1) · · · sn

i (θn) sn
i (θn+1) sn

i (φ)

1 sn+1
i (θ1) · · · sn+1

i (θn) sn+1
i (θn+1) sn+1

i (φ)



=


0 0 0 1
0 � �n+1 �

0 θn θn
n+1 φn

1 θn+1 θn+1
n+1 φn+1


and

M̃n+1 =



[|..‖]0 0 · · · 0 0 1
0 θ1 · · · θn θn+1 φ

0 si(θ1) · · · si(θn) si(θn+1) si(φ)
...

...
...

...
...

0 sn
i (θ1) · · · sn

i (θn) sn
i (θn+1) sn

i (φ)

1 sn+1
i (θ1) · · · sn+1

i (θn) sn+1
i (θn+1) sn+1

i (φ)



=


0 0 0 1
0 θ θn+1 φ

0 si(�) si(�n+1) si(�)

1 θn+1 θn+1
n+1 φn+1

 .

Of course Mn+1 = M̃n+1; they are simply different partitionings of the same matrix.
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To prove the inductive step, we need to show that M
p

n+1 equals

d1,...,n+1(φ) = d1,...,n(dn+1(φ)) = si(d1,...,n(φ)) − si(d1,...,n(θn+1))d1,...,n(θn+1)
−1d1,...,n(φ).

(A.2)

To achieve this, we will need a different, less obvious expression obtained using both Mn+1

and M̃n+1. First note, considering the central blocks of Mn+1 and M̃n+1, that we have[
� �n+1

θn θn
n+1

]
=

[
0 1
I 0

] [
si(�) si(�n+1)

θ θn+1

]
,

[
�

φn

]
=

[
0 1
I 0

] [
si(�)

φ

]
and so [

� �n+1

θn θn
n+1

]−1 [
�

φn

]
=

[
si(�) si(�n+1)

θ θn+1

]−1 [
si(�)

φ

]
.

Using (24) and (A.1), this gives[
�−1� − �−1�n+1d1,...,n(θn+1)

−1d1,...,n(φ)

d1,...,n(θn+1)
−1d1,...,n(φ)

]

=
[
si(�)−1si(�) − si(�)−1si(�n+1)S̃

−1(φ − θsi(�)−1si(�))

S̃−1(φ − θsi(�)−1si(�))

]
,

where S̃ := θn+1 − θsi(�)−1si(�n+1). From this we get[
� �n+1

θn θn
n+1

]−1 [
�

φn

]
=

[
si(�)−1si(�) − si(�)−1si(�n+1)d1,...,n(θn+1)

−1d1,...,n(φ)

d1,...,n(θn+1)
−1d1,...,n(φ)

]
. (A.3)

Finally, we may use (27) and (A.3) to calculate

M
p

n+1 = φn+1 − [
θn+1 θn+1

n+1

] [
� �n+1

θn θn
n+1

]−1 [
�

φn

]
= si(d1,...,n(φ)) − si(d1,...,n(θn+1))d1,...,n(θn+1)

−1d1,...,n(φ).

This establishes (A.2) and the proof is complete. �

Proof of (35). This was proved for n = 1 in (30).
Consider

Mn+1 =



[|..‖]0 0 · · · 0 0 1
0 θ1 · · · θn θn+1 1
0 si(θ1) · · · si(θn) si(θn+1) 0
...

...
...

...
...

0 sn−1
i (θ1) · · · sn−1

i (θn) sn−1
i (θn+1) 0

0 sn
i (θ1) · · · sn

i (θn) sn
i (θn+1) 0

1 sn+1
i (θ1) · · · sn+1

i (θn) sn+1
i (θn+1) 0


=


0 0 0 1
0 � �n+1 P

0 θn θn
n 0

1 θn+1 θn+1
n+1 0



and the alternative partitioning

M̃n+1 =



[|..‖]0 0 · · · 0 0 1
0 θ1 · · · θn θn+1 1
0 si(θ1) · · · si(θn) si(θn+1) 0
...

...
...

...
...

0 sn
i (θ1) · · · sn

i (θn) sn
i (θn+1) 0

1 sn+1
i (θ1) · · · sn+1

i (θn) sn+1
i (θn+1) 0


=


0 0 0 1
0 θ θn+1 1
0 si(�) si(�n+1) 0
1 θn+1 θn+1

n+1 0

 .
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To prove the inductive step, we consider

d1,...,n+1(Xi) = d1,...,n(dn+1(Xi)) = si(d1,...,n(θn+1))d1,...,n(θn+1)
−1d1,...,n(Xi)

= (−1)n−1si(d1,...,n(θn+1))d1,...,n(θn+1)
−1θn�−1PXi,

and so to complete the proof we must show that

M
p

n+1 = si(d1,...,n(θn+1))d1,...,n(θn+1)
−1θn�−1P. (A.4)

Using (27) and a combination of the two partitionings of Mn+1 as was done in the proof
of (35), we get

M
p

n+1 = −[
θn+1 θn+1

n+1

] [
� �n+1

θn θn
n

]−1 [
P

0

]
= −[

θn+1 θn+1
n+1

] [
si(�)−1si(�n+1)d1,...,n(θn+1)

−1θn�−1P

−d1,...,n(θn+1)
−1θn�−1P

]
= si(d1,...,n(θn+1))d1,...,n(θn+1)

−1θn�−1P,

thus verifying (A.4) and hence (37).
In passing we note that using the partitioning of M̃n+1 defined above, we get

M̃
p

n+1 =


0 0 0 1
0 si(�) si(�n+1) 0
0 θ θn+1 1
1 θn+1 θn+1

n+1 0


p

= − [
θn+1 θn+1

n+1

] [
si(�) si(�n+1)

θ θn+1

]−1 [
0
1

]
= −(

θn+1
n+1 − θn+1si(�)−1si(�n+1)

)
(θn+1 − θ�−1�n+1)

−1,

and so

d1,...,n+1(Xi) = (−1)n−1
(
θn+1
n+1 − θn+1si(�)−1si(�n+1)

)
(θn+1 − θ�−1�n+1)

−1Xi. (A.5)

The first factor on the right-hand side is si(d1,...,n(θn+1)). �

Proof of (37). For n = 1, we have, from (21),

d1(Xi) = −si(θ1)θ
−1
1 Xi,

and so, using (27),

d1
(
X−1

i

) = −X−1
i θ1si(θ1)

−1 = X−1
i

0 0 1
1 θ1 0
0 si(θ1) 1

p

,

as required.
Otherwise, we may use the factorization (A.5) to obtain

d1,...,n+1
(
X−1

i

) = (−1)n−1X−1
i (θn+1 − θ�−1�n+1)

(
θn+1
n+1 − θn+1si(�)−1si(�n+1)

)−1
.

It is straightforward to follow the steps in the proof of (A.5) and show that

−(θn+1 − θ�−1�n+1)
(
θn+1
n+1 − θn+1si(�)−1si(�n+1)

)−1 =


0 0 0 1
0 si(�) si(�n+1) 0
0 θn+1 θn+1

n+1 1
1 θ θn+1 0


p

=


0 0 0 1
P � �n+1 0
0 θn θn+1

n+1 0
0 θn+1 θn+1

n+1 1


p

,

which completes the inductive step. �
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